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PREFACE

This progress report summarizes significant results obtained since submission

of the previous Type 11 report, on a project to evaluate the usefulness of

ERTS-1 imagery in regional tectonic mapping and synthesis. The investigation

concentrates on New York State. Work to date continues to demonstrate the

particular suitability of ERTS-I imagery to detect topographically-expressed

features, including large scale structures which would probably never have

been discovered without a regional synoptic capability such as that provided
by ERTS-Io
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i. INTRODUCTI'ON

1.1 -The major objective of this investigation is to extract a maximum

amount of geological information from ERTS-I imagery, and thus to

evaluate its usefulness in regional geological studies'. The results

of our studies to date have been detailed in previous reports to

NASA, in NASA/GSFC Symposium Volumes on the results of ERTS-I inves-

tigations (.sachsen and others, 1973, 1974), and in other publications

(Isachsen 1973. 1974, and Fakundiny, 1974). They show that the

greatest contributions of ERTS-I imagery in New York State have been

in' regional tectonic analysis, and more especially in the delineation

of new linear features.

1.2 The current report will present the results of our continuing analysis

of new imagery and field investigations of ERTS-I linear and curvi-

linear anomalies. No attempt will be made to reiterate the methods

employed in data handling, imagery analysis, and field work, nor to

discuss the general geology of the State and its representation on

ERTS-I imagery. However, to facilitate the reading of this report,

it is worth restating briefly the stages through which our investi-

gation proceeds;

Stage I: Delineation on overlays of all spectral signa-

tures which may be geologically-linked.

Stage II: Evaluation of these ..signatures i,n erms of

existing information of all kinds in order to eliminate

man-induced signatures .and previously-mapped geol ogical

features, thus leaving a residue of ERTS-I anomalies to

be field-checked.

Stage III: Evaluation of these Stage II anomalies by

observation and photography from small aircraft, and by con-

ventional field methods.

Stage IV: Use of the field-validated geological features

in the preparation of an ERTS-enhanced tectonic map of

New York State.

Stage V: Publication of both interim and final resultS.

2. EXPERIMENTATION WITH COMPUTERIZED IMAGE PROCESSING OF ERTS-I DATA

2.1 The present investigation has depended almost solely upon-conventional

photogeological analysis of imagery coupled with multispectral color-

additive viewing using an SDC vie.;uer-projec.tor, This approach has

been highly successful in extracting linear and curvilinea-r information

fromi the imagr. Ilded ic is apparently the only way Li L.ich this

task can be performed at the present time. According to A. Gillespie

(telephone communication) the problems connected with direct digital
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production of a linear map from imagery, (as opposed to an operator-

produced map) are formidable, due mainly to the difficulty of deter-

mining a coherent weighting system.

2.2 Quite another matter, however, is the capability of existing computer
image processing techniques to yield greatly-enhanced images for

geological study (eo,. Coetz and others, 1973; Vincent, 1973).

2.3 In the interest of having a "first look" at the potential of such

image processing, an afternoon (240ct73) was spent at NASA/GSFC

with the generous assistance of Ms. Lottie Brown experimenting with
computer processing of the 11Oct72 ERTS-I scene of the northwest

Adirondacks. Unfortunately time was too short to adequately explore
the potentialities of much of the image processing tasks which can

be performed with Goddard's ID'AM program. Nevertheless, the following
image processing was done, and 35 mm daylight Ektachrome color trans-

parencies were made of the video screen for study:

1. For the whole scene, density stretching of band 4 (stretched

to 30 levels) and the production ofoa color composite of

bands 4, 5, and 7 (bands 5 and 7 had a good density-level

spread to begin with) to test for improvement in delineation
of linear features.

2. 4x enlargement of the above color composite (assigning 4 TV

pixels to one ERTS-I pixel) of Blue Mountain Lake area to

.see if any previousl..y undetected 1inears could be found
which might correspond with the northeast-trending fault
plane solution for the earthquake swarms that occurred from

May 1971 to April 1972 (Sbar and others, 1972) and again

during July 1973 (Aggarwal and others, 1973).

3. Similar enlargement of Mt. Whiteface to see if recent land-
slide scars not visible on routinely-processed Goddard
color composite imagery could be seen.

2.4 An evaluation of the color transparencies obtained above produced

the following results:

1. No new linears were found in the scene nor were previously
observed linears notably enhanced. This is probably because
the density level spread on the original imagery of bands 5

and 7 was already favorable for linear detection.

2. No linears were delineated along the trace of the plane of
epicenters. In view of the low magnitude of the quakes
( 3.6) this is not surprising. It was admittedly a "long
shot", attempted mainly because field work durine the
earthquake activity showed that existing fractures in the

epicencer area nave strikes in hne same sector as tne
2-3.5 km deep quakes (figure 41). More will be said about
ERS-I and seismicity in New York in a later section.
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3. The enlargement of the Mt. Whiteface area did facilitate the
recoenition of landslides, even on the shaded side of the Mountain

(figure 14); the slides do not show on unenhanced imagery.

3, . ERTS-I LINEARS IN NEW YORK STATE

3.1 In this study, the word "linear" is used in the sense of Dennis (1967,
p. 103) to designate a line of uncertain origin on aerial photographs
or imagery. The term lineament, on the other hand, is reserved for a

naturally-occurring linear feature (ag. Hobbs, 1904a, 1904b; Lattman,

1958), i.e. one that has been confirmed to exist on the ground.

3.2 At the present state of investigation, Stage I compilation of linear

and curvilinear features has been completed for the State although
incoming imagery is routinely screened for new data.

3.3 In the photogeologic phase of imagery analysis, at least three.types

of biases are unavoidably introduced. Linear features which parallel

trends of lithology or foliation are omitted, although there are

doubtless places where field work would demonstrate the existence of

colinear joint concentrations. A bias also exists against linears

which may be perfectly aligned with the multispectral scanner raster
lines in the imagery. A third bias is introduced by the azimuth of
solar illumination which preferentially highlights linear valleys at
high angles to the direction of illumination, and diminishes the

identifiability of those parallel to it (Isachsen, 1973).

3.4 Stage II studies have been completed in the Adirondacks and are

nearly finished for southeastern New York. Stage III investigations

are furthest advanced in the Adirondacks, although preliminary results

have been obtained from ground studies in the Catskill region which

has been selected as a sample area for the geological calibration of
ERTS-imagery over the Allegheny Plateau, Because of the enormity of

the State in terms of ground checking, the evaluation of individual
ERTS-I linear and curvilinear anomalies will doubtless occupy the

attention of field geologists well into the future, as new geological

mapping is undertaken.

3.5 The discussions of linear features which follow will concentrate on
Stage III linears in the Adirondacks, a comparison of .the linear

data seen on fall versus winter imagery in the Catskills, and Stage
III linear studies in the Catskills.

A. ERTS-I LINEAR FEATURES IN THE ADIRONDACK MOUNTAINS

4.1 Linear Features Observed in Stage III Study

4,1.1 Field studies in the Adirond.cks. cnrrie ony both convention l
ground methods and by observation and photography from low level air-
craft, has permitted further definition and identification of ERTS-I
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linear anomalies. The result has been to declassify some, re-
classify others, and to add a small additional nunber which 'were
originally considered too marginally expressed on the imagery to
be designated as photogeologic linears. Before giving a tabulation
of these changes, photographic illustrations of both previously-
mapped and new lineaments will be discussed in order to show the
capabilities and limitations of ERTS- imagery for the detection
and mapping of topographic lineaments, In.the illustrations selected,
preference has been given to those occurring within the major body of
metanorthosite in the Marcy Massif because of its relative homogeneity

Sand massiveness as compared with surrounding rocks (Isachsen and
Moxham, 1968; Isachsen and Fisher, 1971).

4.,.2 A location map and descriptive information is given for linears still
"in good standing" in the Appendix.

4.1.3 The longest clearly-defined topographic lineament in the Adirondacks
is the previously-mapped feature that extends from the Miarcy Massif
metanorthosite south-southeast, across nearly every Adirondack rock
type, to the southern boundary of the Adirondacks where it passes
beneath Paleozoic strata without any apparent offset in the cover
rocks (figure 39). Geomorphically, the most impressive part of this
lineament is the Long Lake section (figure 2).- It is interesting
that this, the longest linear feature, occurs near the western limit
of intense lineament development (figures 39 and 40).

4.1.4 A previously-mapped lineament in the high peaks region, located
entirely within the Marcy Massif, is that which passes through
Avalanche Lake located in the shadow of Mt. Colden (Figure 3). An
orthogonal lineament set crossing Mt. Colden cannot be distinguished
on the ERTS-I imagery owing to a combination of its small scale and
its near parallelism to the multispectral scanner raster lines.

4.1.5 Several of the arms of Cranberry Lake in the east central Adirondacks
are broad linear valleys developed in granitic gneiss (figures 39
and 4). Extensions of these lineaments, first observed from low
level aircraft (figure 4), were found on re-examination to be visible
in the imagery.(linears 176a and 176b in Appendix II). A view of
another arm of Cranberry Lake showing lineament 175 appears in figure
5. ERTS-1 imagery has been especially useful in this part of the
Adirondacks where topographic maps predate stereomapping methods.

4.1.6 A rocky shoreline along Lake Champlain permitted interesting aerial
documentation of ERTS-I lineaments. Shoreline expression includes
the formation of coves, discontinuity in the shoreline cliffs, and
inclination of joints near the structures suggestive of conjugate
shears associated with faulting.

4.1.7 Another lineament located in metanorthosite_ is shown in figure 8.
It illustrates well a cuestion tha- continues to nlou S o in the
identification of photolinearson ERTS, namely, what minimum length is
required before a linear feature can be classified a topographic
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Ilneament and hence assumed to be structurally controlled? The
question arises again in considering figures 14 and 15. In the
present illustration, however, the continuation of the linear beyond
the head of the valley is judged a valid reason for the classification.
A ground check is desirable to ascertain the cause of the lineament.

4.1.8 Figure 9 illustrates a previously-mapped fault in mangerite which
appears in the imagery to have an eastward extension.

4.1.9 More subtle lineaments are seen in the Seward Range (figures 10 and

11). These contrast sharply with the strong geomorphic expression
of other linears in the same metanorthosite massif farther east
(figure 1 and 3). Indeed, they occur near the western limit of
strong lineament development and deserve ground study and verification.

4.1.10 Figure 12 shows part of topographic lineament 309 which joins together

two previously-mapped linear elements, and extends one.of them, to
define a single lineament 50 km long.

4.1,11 An example of the difficulty that can be experienced in identifying
a topographic lineament, even from the oest vantage point, is shown
in figure 13. The linear feature is faint, at best, in the photo-
graph despite its clarity in the imagery.

4.1.12 Figures 14 and 15 illustrate a linear valley which is tentatively
classified as a topographic lineament because it notches.the ridge.
Its possible continuation beyond the ridge is obscured in shadow even
.con the computer-enhanced image.

4.1.13 A short, straight lineament is illustrated on the east side of.
Catamount Mountain in the northern Adirondacks (figure 16). It is
quite possible that Taylor Pond should also be classified as a
lineament inasmuch as it is developed within a relatively massive
charnockite.

4.1.'14 A subtle linear valley cutting Follensby Pond in the central Adir-
ondacks (figure 17) is classified as a topographic lineament because
it transects lithologic boundaries at right angles. The apparent
cuesta in the photograph reflects eastward dipping foliation in a
mangeritic gneiss.

4.1.15 Another subtle linear valley is shown in figure 18. Although un-
impressive in this lighting, the linear is well displayed on the
imagery and is tentatively classified a topographic lineament.

4.1.16 An example of a declassified linear is shown in figure 19. Although
fairly convincing on the imagery, it turns out to be a ridge crest
enhanced by a vegetation boundary but without any apparent geological
control; it is located entirely within gabbroic metenorthosite.

4.1.i7 in conErast to linear valleys described above which are well defined
on the imagery but very subtle in the field, there are other shorter
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ones which have the opposite characteristics, One example is a

newly-discovered lineament trending N42W (figure 20). Perhaps the

reason it is not delineated on ERTS is that it too closely parallels

the azimuth of solar illumination. A photograph taken of the opposite

side of the Maclntyre Range (figure 21) shows numerous lineaments

cutting the mountainside. The most.pronounced of these, that which

passes on the left of snow-capped Algonquin Peak, is a new lineament

not originally identified on the imagery. It strikes N82W at a high

angle (550) to the azimuth of solar illumination. Another of these

lineaments trends N4OW, within 130 of the solar illumination direction,

and is barely visible on the imagery. The other steeply inclined

lineaments are in shadow on the imagery. Note, however, the two lines

running from left to right midway up the mountain. One of these shows

clearly on the imagery as a new lineament. Each of these lineament

sets will be studied in the field to determine and compare their

origins. They appear to offer an intriguing prospect for regional

basemeit stress analysis.

4.1.18 Another photograph of the MacIntyre Range, taken south of the preceding

illustration, shows the blocky upper surface of the Range produced

by intersecting orthogonal and oblique lineaments (figure 22). Two

major previously-mapped lineaments, appearing broadly curved in this

view, cross the picture from left.to right. At least five other, newly

discovered lineaments are shown but none of these can be mapped with

confidence in the imagery. In the left middleground a vertical linea-

ment crosses Cliff Mountain (see also figure 23). It is not clearly

visible in the imagery.

4.1.19 A further example of newly discovered lineaments which are below the

detectability of ERTS-I resolution (either summer or winter) are

illustrated in figure 24. Local cloud cover during U-2 flight obscured

this Peak, so the trends of these lineaments are not yet known.

4.1.20 An exceptional exposure of a fault surface in the Adirondacks is that

exposed in the east-west open pit operation of the Barton Garnet Mine

in North Creek, eastern Adirondacks (figure 26). The fault zone marks

the contact between charnockite on the right (south) and the garneti-

ferous olivine metagabbro which is being mined. The fault zone is

about 3 meters wide, nearly vertical, and characterized by slicken-

siding oriented in several directions and intense chloritization,

As can be seen in figure 26, the fault surface is quite irregular. It
strikes east-west and dips about 750 north in the western (near) end
of the pit and swings through the vertical at the eastern end. Also
visible are broad rolls in the surface which have subhorizontal axes.
The fault zone is about 3 meters wide, is chloritized but not brecciated,
and shows both horizontal and vertical slickensiding. Away from the
excavation-the fault cannot be recognized owing to an absence of outcrops.

Although brecciation does not characterize this -east-west fault, it can
be seen in several Adirondack road cuts along the major north-northeast

set of topographic lineaments.

4.1.21 An example of closely-spaced jointing as a cause for the development

of a linear stream channel segment is illustrated in figure 25.
AbouL 50 mi>-ters upstream a healed piasLic shear zone- between -two
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facies of metanorthosite occurs, suggesting the possibilitv of
rejuvenated brittle deformation along an old shear zone.

4.2 'Status of ERTS-I Linears in the Adirondack Region

4.2.1 On the Geologic Map of New York, 1961 edition, (Fisher and others,

1961) Isachsenadded in the Adirondack region numerous topographic
lineaments which could be seen clearly on 1:62,500 topographic- maps
made by stereophotogrammetric methods. The contour interval of

these maps is 20 feet. The linear features were designated "topo-

graphic lineaments" to distinquish their status from that of mapped
faults. Interestingly, the two are, in most instances, -indistin-
quishable topographically except where mapped faults have only
.slight topographic expression. To this group can now be added new
topographic lineaments found on the ERTS-I imagery, These will be
discussed subsequently.

4.2.2 As in previous reports, we continue to classify ERTS-I linear

f atures using descriptive terms; for topographic lineaments the
terms are geomorphic (table 1). The importance of avoiding genetic
terminology in the presentation of photogeologic data, even for

planetary studies, appears to require periodic emphasis (ezq.

Schmitt, 1966; Schultz and Ingerson, 1973).

4.2.3 The breakdown of ERTS-I linear features resulting after Stage II
and incomplete Stage III investigations in the Adirondack Mountains
is shown in table 1. At -the head of the 'table are listed the de-
classified Stage I linears, These comprise about 20 Farcent of the
original total of linears (435-30 curvilinears = 405); they will
not be considered further. Each of the remaining linears was clas-
sified both in terms of its photogeologic description (left column)
and its topographic expression (CTL, TL, or NTL of table 1, see
footnote) in order to determine the number of new ERTS-I topographic
lineaments. It can be seen that both the CTL and TL categories are
topographic lineaments by definition (postponing for the present the
question of possible additional requirements besides straightness
and topographic expression, such as minimum length and other geo-
morphic characteristics). The same applies to NTL linears in photo-
geologic classes one through four which must have topographic

expression even though they might appear, for example, as feature-
less,.dark vegetation stripswhich are determined from airfoto index
sheets to occur along straight stream courses. Such linears would
be placed in class I under NTL. Summing all these topographic
lineaments yields a total of 238, or nearly 75 percent of the total
number, 321.

4.2.4 Before comparing previous and present totals, it should be noted
that the present totals refer only to linear features; 30 curvi-
linears from the previous list have been omitted. Also omitted is
the earlier designation "ridge crests" because the linears involved
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T:able 1. PRESE AT RESULTS OF STAGE II AND STAGE III EVALUATION OF ERTS-I LINEAR FEATURES IN THE ADIRONDACKS

Topographic Expression
Photogeological Classification

CTL TL NTL Totals Previous
Totals

I. Declassifi.d Stage I Linears

1. Man-caused photolinears which are unrelated to natural fea-
tures, ez_ highways, transmission lines, railroad beds,
canals, etc. 20 20 20

2. Normal lithological contacts and foliation trends 43 2 9 54 51

3. Unverifiable on the ground as linear features .. 17
SUBTOTALS 43 2 29 91 71

I. Rjtaiiled Stage II and Stage III Linears

1. Straight segments of stream courses 5 5 96

S2 Straiglht stream valleys 101 22 123 27

3. Winding streams 3 3 7

4. Elongate lakes or straight lake shorelines 2 2 4 7

5. Edge of topographic high or aligned segments of same 7 7 8

6. Dark vegetation strips 8 8 30

7. Natural vegetation borders 6 6 7

8. Combinations of two or more of above, indicating topographic
expression which predominates 80 16 33 129 57

9, Unexplained 36 36 125

SUBTOTALS 190 38 93 321 364

TOTALS 233 40 122 412 435**

*CTL = cloarly a topographic lineament on imagery and on ground
TL = topographic lineament on ground but not obviously so on imagery
NTL = not a topographic linear feature on imagery, and not yet check on ground

**Presecnt and previous totals are reconciled by subtracting 30 curvilinears from the previous total and adding 7 new
linears. Previous totals are from Isachsen, 1973.



were not caused by any variations in structure (or lithology), the
terrane involved being relatively homogeneous metanorthosite of-

the Marcy Massif. Rather, they are explainable as residual linear

ridges bounded by parallel topograpic lineaments Allowing for.
these changes, the following are notable reclassifications:

1. Seventeen linears were declassified as unverifiable on the

ground as linear features.

2, About 75 percent of the dark vegetation strips were found
to coincide with'ttraight stream valleys" and were hence

transferred from a botanical to a geomorphic category.

3, About 65 percent of the "unexplained" linears were reclas-
sified, many as combinations of geomorphic and botanical
categories.*.

4, About 95 percent of the "straight segments of stream

courses" were reclassified into other categories, mainly
"straight stream valleys".

5. ERTS-I LINEAR FEATURES IN THE CATSKILL MOUNTAINS

5.1 Introduction

5.1.1 As noted in our last Type II report (Isachsen and others, 1.73) ..
a vertical aerial photograph (1:24,000) taken by NASA in support of

this investigation proved to be a useful calibration device to deter-

mine how short a linear may be mapped on ERTS-1 imagery with confi-
dence. We were surprised to learn that linears on the 1:1,000,00
imagery spaced as little as 1 km apart, and as short as 1.5 km appear

as straight, deep valleys on the aerial photography. As a result of
this discovery we re-analyzed the imagery for the southern part of

the State and delineated linears with new courage. The resulting
map is shown as figure 40.

5.2 Comparison of Linear Content in Fall and Winter Imagery

5.2.1 In the process of re-analyzing the imagery, it was decided to compare,
for the southeastern part of the State, the best fall and winter
imagery available (figures 28 and 29). The goal was to evaluate the
expected enhancement effects of low sun angle.and snow cover on topo-
graphic and tonal linears. Both black and white transparencies of
bands 5 and 7 were studied, and also color composite prints and
transparencies. The area studied extends from Coxsackie on the north
to Haverstraw on the south,and from Oneonta on the west to the Hudson
River on the east (figures 30 and 31). Ic is covered by a block of
*thirty 1.5 minute quadrang es, six in am east-et direction by five
from north to south. Results of the analysis are shown in figures
30 through 34.

-9-



5.2.2 The winter imagery for these thirty quadrangles shows 1175 topo-

graphic and 30 tonal linears whereas the fall inmagery displays 730

topographic and 211 tonal linears. The "winter linears", however,

although more numerous, are much shorter (usually less than 10 km

long) and some represent segments of single longer linears observed

in the fall imagery. Many of the shorter winter linears (less than

4 km long) do not appear on the fall imagery, however, and the

summed lengths of all linears appearing on the winter imagery may

well exceed those on the fall imagery.

5.2.3 The snow cover has a dual effect: it eliminates cultural signa-

tures and accentuates topography. Thus, about sixty tonal linears

on the fall imagery appear as topographic linears on the winter

scene. Three tonal linears in the winter image, all with a north-.

east orientation, appear as topographic linears on the fall image

(figure 33). Their topographic expression is confirmed on topo-

graphic maps. Of the linears that appear exclusively on the winter

image (figures 29 and 32) only one is longer than 10 km, and most

are shorter than 5 km. The greatest density of linears seen only on
the winter imagery appear in the Catskill Mountains in a broad east-

west band. Several of the linears that appear exclusively in the

fall imagery exceed 10 km in length. These show no preferred

orientation.

5.2.4 About one-third of the linears appearing in the fall image are not

recognized in the winter image, whereas about one-fourth of the

linears on the winter image are not expressed on the fall image.

Predonimant azinuth, density, length, ratio of tonal linears

to topographic linears, and curvatures appear to differ from
one geologic province to another on the winter imagery much as they

do in the fall scene.

5.2.5 Formational contacts are accentuated in the winter image, especially

in the Shawangunk Mountains.

5.2.6 In conclusion, a satisfactory analysis of linear features can be

made by combining the linears found on one clear winter scene and

one clear fall scene,using positive transparencies of band 7.

However, color composite film positives or prints.of bands 4, 5,
and 7 proved to be extremely valuable for defining the regional
valley patterns and displaying the linears that would be derived

from separate analysis of positive transparencies of each band.

5.3 Stage III Reconnaissance in the Northern Catskill Mountains

5.3.1 In an initial field evaluation of linears in the northern Catskills,
joints and'geomorphological-features have been studied at 18

localities in three 15 minute quadrangles spanning the northern

Catskill Mountains (figure 27). The field-data have been summarized

in table 2, from which the following conclusions may be drawn.
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1. The overwhelming majority of ERTS-I linears are topographic.
Tonal linears are almost entirely restricted to the Hudson

Valley (figure 30).

2. Topographic linears on the imagery, even as short as 1 km,
correspond to straight valleys in the field.

3. In twelve of the nineteen outcrops found in such valleys, a

joint set was displayed parallel to the axis of the valley.

Four other outcrops studied have joints oriented within 15

degrees of the valley axes, and one outcrop with poorly
expressed joints shows no correspondence between joint and

linear directions.

4. Individual outcrops generally show one, two, or three joint

sets. One set is usually more prominently developed than the

others, and it is commonly this set which parallels the axis
of the valley.

5. Within a given 15 minute quadrangle, local joint set patterns

vary in azimuth from one part of the quadrangle to another,
and the straight valleys vary correspondingly.

6. Several of the tonal linears turned out to be topographically

expressed in the field, and one corresponds to the Catskill
river.

5.3.2 The foregoing results point to a direct relationship between the long

axes of straight valley segments as seen on the ERTS-I imagery, and
the strike of major joint sets. Similar parallel relationships have
been found using aerial photographs in nearby portions of the Allegheny

Plateau by Lattman and Nickelsen (1958), and elsewhere'by Boyer and
McQueen (1964). Indeed Hobbs (1904b) showed an impressive correlation,
without the benefit of either photography or imagery,between linear
drainage systems and joint directions in the Finger Lakes region to
the west, so the prospects for mapping joint systems directly on ERTS-I
imagery appear very promising. If subsequent field investigations across
the Allegheny Plateau confirm this relationship, ERTS-I imagery will
prove to be the most economical method available for mapping major joint
sets over large regions.

5.4 Stage III Study of the Stony Clove Topographic Lineament

5.4.1 Attention has been directed in an earlier NASA report and publication
(Isachsen, 1973) to the straight, north-northeast-trending Wall of
Manitou which borders the Catskill Mountains on the east, and the series
of closely-spaced, parallel topographic lineaments which occur west of
the Front (figure 28). A low-level aerial photograph of one of these,
Stony Clove, shows the head of the valley to be narrow.and steep-walled,
carved into flat-lying shales and sandstones (figure 35). The aerial
vie~; suggests that th east wall .may be '-1ihtly do;w-dcoppad. Field
altimetry to check this possibility was inconclusive, inasmuch as an
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elevation difference of only five meters across a valley width of

100 meters in continental sediments can be explained without resort

to faulting. Of interest, however, is the fact that the valley is

developed along a steeply-dipping conjugate joint system. On the

west side of the valley, east-dipping joints are dominant. On the

east side, westward dips predominate (figure 36). The orientation

of the 320 acute angle is compatible with the interpretation that

this system of conjugate joints, and the trace of the valley itself,

are raflected basement structures such as might be produced by minor

dip-slip reactivation along a basement fault. In support of this

interpretation, it may be noted that the entire set of north-north-

east-trending topographic lineaments in the eastern Catskills is

aligned with lineaments of similar strike and spacing in the exposed

basement rocks of the eastern Adirondacks (figures 39 and 40). The

relief of Clove Valley is 2000 feet, the valley floor is 1800 feet

above sea level and the basement surface is about 10,800 feet below

sea level (Rickard, 1973, plate 18).

5.4.2 If the above conclusions are supported by future work, they may

provide a means of recognizing in the Allegheny Plateau reflected

basement normal faults which are manifested at the surface by a

conjugate joint system, the acute angle'of which is bisected by

a vertical axis of maximum principal stress. Such lineaments would

be distinguishable from other valleys which are controlled by

vertical joint sets. This will be tested by additional field work.

5.4.3 Another, very different method may exist for distinguishing genetic

types of lineaments: those having normal background levels of

radioactivity and those having on the order of 2x background.

John Gabelman of the U.S. Atomic Energy Commission has made recon-

naissance surveys of gamma radiation along a number of the major

topographic lineaments in the Allegheny Plateau of New York and

Pennsylvania, using a portable Mt. Sopris scintillometer on highway

traverses (oral communication). He has found the level of radiation

along such lineaments to be nearly two times the normal background

count. On traverses up tributary valleys, the count returns to

normal. A nearly twice-background radiation level was found along

the east-northeast lineament followed by Route 7, between Binghamton

and Cobleskill.

5.4.4 Inasmuch as our work in the Catskills has shown the existence of at

least two genetic types of joint-controlled lineaments, one which

parallels vertical joints and the other conjugate system of inclined

joints, we plan, as a result of Gabelman's observations, to accompany

future fracture analysis in the field with routine scintillometer

measurements. We will do this less in the expectation of discovering

highly anomalous areas (although continental sandstones such as occur

in the Catskill facies are favorable uranium host rocks),than in the

hope of finding an indirect means of discriminating between genetically

different types of fracture systems.
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6. ERTS-I AND STORMI DIAMAGE ANALYSIS, LAKE ONTARIO

6.1 Introduction

6.1.1 Although outside the main objectives of this study, fascination

with -the extensiveness of sediment plumes along the south shore

of Lake Ontario shown on ERTS-I imagery of 23Mar73 (figure 37),but
not on earlier imagery, led us to newspaper accounts of the storm

activity that was the cause, and to a brief investigation of the

potential of ERTS-I for studying storm effects on the Great Lakes,

The total time involved in this analysis was only two hours.

6.1.2 On March 17, 1973 according to The Rochester Democrat Chronicle of

the succeeding two days, 10 to 15 foot waves, caused by 50 to 60

mile-per-hour winds, damaged hundreds of homes along the Lake Ontario

shoreline and forced evacuation of many families. Accompanying heavy

rain caused lakeshore flooding along a 33-mile stretch from Webster

to Hamlin, which includes Rochester. The shoreline erosion was the

most severe in 20 years,and damage was estimated at more than 10

million dollars.

6.2 Dispersal Patternsof Suspended Particles Caused by the Storm

6.2.1 Two effects of the storm were analyzed in the imagery, namely, shore-

line erosion.and the dispersal pattern of suspended particles. The

best combination of imagery for studying the extent of sediment plumes

-appearcd to -be band 5 and band 7-of 23Mar73 -(no. 1243-.15244).. Band 5

was projected in red and band 7 in blue, using an SDC viewer.

6.2.2 Figure 37 illustrates the shape and magnitude of dispersed sediment.

Definite longshore transport of sediment to the east can be seen

clearly, and at the eastern end of the lake a curl extends some 60 km

offshore. Complex currents around the mouth of the Genesee River at

the-left side of the photograph are evidenced by the westward hook

shape of the river sediment from the point at which it enters the Lake
to approximately 7 km offshore.

6.2.3 Two months after the storm, no hook shape was apparent, but the

Genesee River plume still extended about 7 km out from the shore,

(image no. 1297-15243 of 16May73). Two months later, however, it
had returned to the normal i km from the shore (image no. 1351-15230
of 9Ju173). For unknown reasons we have received only one 70 mm
image, band 7, of the intermediate orbit (3June73), so cannot deter-
mine if the plume had diminished to normal dimensions by that time.

6.3 Shoreline ^Erosion Produced by the Storm

6 3.1 The major erosional effects of the storm on the Lake Ontario shoreline
were identified through multi-temporal study of band 7 for 19Aug72

(red filtered) and 23 Mar73 (unfiltered), using an SDC viewer. A com-
parison was also made using a Zoom Transferscope. Either instrument
would have been satisfactorv for the study.
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6.3.2 The following effects were noted:

1. About 20 km wesc of-the mouth of the Gencsee River, the west

end of an offshore bar appears to have been either eroded or

inundated by storm waters,and the remainder appears to have

been narrowed (compare figures 38a and 38b). Pronounced

flooding of bays can also be seen in this area.

2. In the eastern third of figures 38a and 38b (area east of

Sodus Bay) several bay-mouth bars are either narrowed or no

longer visible, flooding has occurred in a number of places,

and a bay appears to have been created which does not appear

on the 19Aug72 image.

3. In the later imagery of 9Jul73 which shows that water elevations

have largely returned to the 19Aug72 levels, the western end

of the pre-storm offshore bar west of the Genesee River is

still not visible, indicating that it was not merely inundated,

but eroded by the storm.

6.3.3 This very brief study serves to illustrate the potential offered by

ERTS-I imagery for analyzing etosional and transportational processes

along the shorelines of major lakes.

7. ERTS-I AND SEISMICITY IN NEW YORK STATE

7.1 One of the-most intensively studied-seismic areas in the -world which is

located entirely within a continental plate (rather than at its margin)

is Blue Mountain Lake in the central Adirondacks. It can be seen in

figure 39 as an elliptical black spot, about 5 km long in an east-west

direction, located approximately 15 km south of the center of the

Adirondacks. It was here, during the summer of 1973, that earthquake

prediction was successfully achieved (Aggarwal and others, 1973). Another

reason for a continuing interest in the seismicity of this area (as well

as several others within the North American plate), is its possible con-

tribution to an understanding of the driving forces for plate motion.

For these reasons, and because of the potential value of an ERTS-enhanced

fracture map for relating seismicity and tectonics, it was decided to

search the imagery, U-2 photography, and the epicenter area itself for

relevant fracture data.

7.2 Moderate size earthquakes (up to magnitude 3.6) and many microseisms

at Blue Mountain Lake were recorded during July and August, 1971 by

portable seismographs which were installed after two events had occurred

on May 23, 1971 (Sbar and others, 1972). Quakes of similar magnitude

were recorded in this area again in August 1973, by Lamont-Doherty

Geological Observatory and the Geblogicai Survey of the New York State

Museum and Science Service (Aggarwal, 1973L) Shallow earthquake foci

(<2.0 kn) were confined to a tabular zone trending NL2W and dipping

25 degrees to the east, while the deeper quakes (2-3.5 kin) occurred on
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a surface striking N31E and dipping 590 east. -First motion studies

showed both focal mechanisms to be thrust faulting, in agreement with

the horizontal east-west compressive stresses known to characterize

the.easterri United States (Sbar and others, 1973).

7.3 The deeper quakes occur along a surface which strikes parallel to the

direction of the prominent northeast faulting in the eastern Adirondacks

as shown on the map of linears (figure 40) and the rose diagrams of

figure 41; the tabular zone of shallower quakes on the other hand,

trends in the direction of less prominent north-northwest fractures.

A detailed ground search in the epicenter area disclosed only joints,
but no evidence of fresh movement along their surfaces. Thirty-four

joints were seen and measured. Nearly all dip more steeply than 800.

Those with strikes in the northeast quadrant show a very broad spread
without any maxima. In the northwestern quadrant, however, strikes

are concentrated in the sector N15-30W. Thus, for whatever it may be
worth at this stage, the strike of the steeply-dipping fault surface

of the deeper quakes parallels prominent Adirondack.fault trends which

also dip steeply, whereas that of the shallower quakes lies near one

end of the N15-40W trend of local jointing.

7.4 No linears could be found in the Blue Mountain area on either the ERTS-I

imagery (even after thecomputer image processing described in section 2)

or in U-2 color infrared transparencies. Another confusing feature of

the Blue Mountain seismicity is its occurrence west of the region of

closely-spaced faults and topographic lineaments (figure 39). A possible
explanation -may -be that the fault surfaces in the :eastern Adirondacks are
steep to vertical, and hence do not provide suitably oriented shear

surfaces for reactivation by the regional horizontal east-west compressive
stresses in the region.

7.5 An interesting sidelight of the field study may be worth mentioning.
Seven distinct earthquakes were heard emmanating from beneath a swamp
which centers on the epicenter area. The sounds emitted for individual
quaes were a low, resonating "thong",'kathong",or'kong". A subsequent
check of the seismic records showed that the timing of these sounds
corresponded to the occurrence of earthquakes of -1 intensity on the
Richter scale.

7.6 A map showing locations of the more reliably located earthquake source
areas in the State is now being gleaned from the literature to evaluate
possible spatial relationships between epicenters and fracture systems
displayed on an ERTS-enhanced fracture map of New York State.,

8. CONCLUSIONS

8.1 The greatest contribution of ERTS-I imagery in New York State continues to
be in the field of regional tectonic analyses, more especiallv in the eLin-
eation of new linear features many of which have been verified on the ground,
and circular features which remain problematical. All ERTS-I linears
confirmed to date have been topographic features on the ground, although
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many of these appear on the imagery as tonal linears without relief, or
as combinations of tonal and topographic features.

8.2 in the Adirondacks, the use of low level aerial observation and photo-

graphy, coupled with ground investigation, has resulted in the elimination
of about five percent of the original number of ERTS-I linear features
remainring after the exclusion of those which are man-caused or litholo-
gically controlled. In addition, it has led to the discovery of a system
of intersecting orthogonal and oblique fractures which cut the relatively
homogeneous and massive Marcy Massif metanorthosite. These, together
with the previously-mapped and new ERTS-I topographic lineaments will
hopefully provide enough data, after ground study, to permit a regional
basement stress analysis.

8.3 Ground study of ERTS-I anomalies in the Adirondacks indicate that: 1)
outcrops are even more rare than expected along the traces of topographic
lineaments, 2) fault breccias are found along some of the north-northeast
lineaments, 3) chloritization and slickensiding, without brecciation,were
'found along an east-west lineament, and 4) closely-spaced joints and a
zone of plastic shear was found along another east-west lineament.

8.4 Use of the NASA/GSFC program for image processing (IDAM) suggests that
some additional detail may be recovered on the shaded sides of mountains
using the program sequence for contrast stretching, color-compositing, and
enlarging.

8.5 A search of ERTS-I imagery and U-2 photography failed to disclose new
linears along the -computed thrust fault sites of the Blue Mountain earth-
quakes of 1971 and 1973 in the central Adirondacks.

8.6 A comparison of linears on fall and winter imagery covering southeastern
New York State showed that long linears on the fall imagery appeared as
short segments on the winter imagery, that some additional short linears
(Z4 km) occur on the winter imagery, Of the linears which appear exclu-
sively on the fall imagery, several exceed 10 km in length. Those which
are restricted to the winter imagery tend to be less than 5 km long.
About one-third of the linears appearing on the fall imagery are not seen
on the winter imagery, and approximately one-fourth of those on the winter
image are not expressed on the fall image. Thus, for complete mapping of
ERTS-I linear features it is advisable to use the best fall and winter
images; color composites are preferred, although nearly equal results can
be obtained using band 7 alone.

8.7 Field work in the northern Catskills shows a fairly good correspondence
between the directions of linear valleys and master joint sets. If
subsequent field work confirms this relationship across the Allegheny
Plateau, ERTS-I imagery will prove to be the most economical method
available for mapping major joint sets over large regions.

8.8 Field study of the Stony Clove topographic lineament, one of several
which paraiiel the straight eastern terminus of the Catskill Mouncains
known as the Wall of Manitou, show it to be controlled by a parallel
system of conjugate joints with acute angle bisectedby a vertical plane.
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The north-northeast lineamet set of which Stony C.ove is an..xa!mp c

are interp reted as the traces of upward-propogatec vertical movc.ment

on reactivated basement faults. 'JThis would provide the vertical maximu:n

principal stress suggested by the conjugate joints. This interpretation

is supported by the fact that the entire Stony Clove set of lineament

is aligned with lineaments of similar strike.and spacing where the base-

ment crops out to the north-northeast in the eastern Adirondacks.

8.9 It is tentatively extrapolated that many of the north--northeast lineaments

which appear to terminate at the southern border of the Adirondacks

actually extend across the Mohawk Valley and southward °beneath the Allegheny
Plateau, This model will be further tested in the field,
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.~Aribl view south-southwest along the longest (115 kin) clearly-

t~p,,,.orphic lineament in the Adirondack Mountains. About 30 km of

-ient are visible in the photograph.

. i looking s(u;thweist alohg peviousi-i.mapeu v1a1lice

" li n amcnt which borders Nt. Coldcn. The topographic lincancnts
'-,~ 1 g Mt. Col.den orthogonally cannot be distinquished on the imnagery.

... ti cpiy incised of. these is croed along the >it. Colcen meta-
r d F2ike.
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A(Iord . View of Cranberry Lake from the southwest showing radial arms of the

Lgas 5 ,ell as two new topographic lineaments visible on the ERTS-1 imagery,
Wk~ converge at the southern end of the Lake, Bedrock is mainly granitic gneiss.

F;O e 5.g View looking northeast up linear 1.75 which forms the west-southwestern
IfO Cranberry Lake. Bedrock is mainly granitic gneiss.
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•Figure 6. View of the west shore of Lake Champlain showing two topographic linea-
ments (3 4 3a on left and 343 on right) converging tcward the camera; aerial recon-
naissance along the shoreline cliffs shows a break in outcrop at both sites (see
figure below). A narrow belt of mixed gneisses- parallels the shore, beyond which
the bedrock is gabbroic metanorthosite gneiss.

. .a 1; i

I'i4

FjIL 7. CIur view of iineament 343 showing snoreine expression, namely, cove
indentation, discontinuity in shoreline cliffs, and inclined fracture traces in
cliffs near the lineament.
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A p 8 . Vie: c tward up topographic lineament 354, entirely in metanortho-
rite, which continies to the west beyond the divide. Orthogonal valley in fore-

S,,,nd roughly follows contact between the metanorthosite and an olivine meta-
a.hbro body.

-- I :

r

Figure 9. Looking eastward toward Lincoln Pond along topographic
lineament 356.
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F;tfE- 10. View north-northeast along lineament 215 in the Seward Mountains, entirely
Lithin metanorthosite. The valley immediately to the left is linear 216, and that
adjacent to the right a previously mapped topographic lineament which is better shown
to figure 11.

Ct*, *~ 4, Leo~'*ing not -~$I - uere;vJu. sl-r-opped tLo<oraic ineariht
V' Swlatrbte$ t Se'ward Mo nuti on tho left rrom Mt. Seymour on the right,

1 Within inn ae



,i
A

Figure 3 o s e

migr12. seerah3n oinst
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Figure 14. Third generation print made from, ktachrome slide
of 4X computer-generated color composite of Mt. Whiteface,
The photograph is unconventionally oriented to facilitate com-
parison with figure below. Note bare summit and landslide scars
on shadowed side of Mountain.

Figure 15. Mt. Whiteface, looking southwest up linear valley
of White Brook. Note four fresh landslide scars of 1971. Mt.
Whiteface is dominantly metanorthosite.
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Fiur 5. Mt hief,I lokn otws u iervle
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Figure 16. View north ast to;ard Catamount Mountain which is banded on the east
by lineament 264 and on the west by Taylor Pond, the shorelines of which parallel
this lineament.

Figure 17. View looking north toward Follensby Pond. Linear valley 219 croses
photograph diagonally from lower left corner to beyond the Pond, and cuts ortho-
ponally across metasediments, charnockitc, and rmtanorthsitc.
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Figure 18. Linear valley 348 extending northeastward from lower left corner tomiddle of picture.. Although well displayed on ERTS-I imagery, the valley is only
faintly visible in this view .under midday solar' illumination.

-i

Figure 19. Looking northeastward along linear 349 which is located parallel to
and immediately north of topographic lineament 348. It is seen to be a ridger-line
demarcation between conifers on the south and mixed hardwoods on the north; it
was declassified as a linear.
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Figure 20. Linar valley in Maclntyre Range trending N42W
between Iroquois and Boundary Peaks, the latter barely dis-
cernible as a peak. Snow-covered Algonquin Peak is farther
to the right. Entire area is within the Marcy metanorthosite
massif.

Figure 21. View of ,Macintyre Kange looking southwest, with
Algonquin, Boundary, and Iroquois Peaks from north to south.
The numerous linears shown are discussed in text.
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Figure 22. Aerial view taken over the lip of Wallface, looking
southeast, showing blocky nature of the MacIntyre Range produced
by intersecting topographic lineaments; photograph taken south
along the Range from the preceding figure. The vertical lineament
shown in the left middleground crosses Cliff Mountain (see below)

A. -

linenment that crosces ClifF ntunrin, This ' 1 .o: is "r'inv1ly
visible in .. S--i imagery but could not be draWi n uth L ari ce.
Scene is entirely within metanorthosite.
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Figure 24. View of Mt. Marcy (metanorthosite) looking north-
easterly. The northerly-trending topographic lineaments on
the Mountain, here enhanced by snow, are beyond the resolution
of ERTS-1 imagery.

gA

Figure 25. Looking westward across the lip of Roaring Brook Falls showing
the closely spaced joints which control tbe stream bed trend,
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Figure 26. Excavated fault surface at Barton Garnet Mine in the
southeastern Adirondacks. The fault marks the contact between
the garnetiferous olivine metagabbro ore in the pit and charn-
ockite to the right.
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.Figure 35. Stony Clove drainage divide, looking north-north-
east, Outcrop along lower sandstone member on east side of
valley is shown in figure below. Print made from color infra-
red transparency,

wall of StoM y Clove, oking north, Note dominance of west-

ward dipping joint set (Mhich parall , vall y) Wnd conjugate
joints at easL side of Outcrop; dips are 750E and 73oW making
in acute anple of 320.
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Figure 38a. South shore of Lake Ontario prior to storm of 17Mar73. Band 7,
image no. 1027-15233, of 19Aug72.
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fiuc b Sout~h sbore of Late Ontaio five days nfter storm of 1700br3,
Band 5, Imnage no. 1243-15244, of 230ar3.
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Figurn 39, ERTS-I mosaic of New York State
and surroun ing areas made from the best : . ,y.
available 1:1,000,000 imagery of spring, ,

summer, and fall, band 7. .
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STAGE II AND III LINEAR ANMAL'IES IN THE ADIRONDACK REGION

Ident, Air- Strike Length Airfoto Index Identification Field Identification and Remarks Photo

No.* foto in km ICTL=clearly a topographic lineament on imagery and No

index ' on ground

Sheet . I TL=topographic lineament on ground but not obvi-

ously so on imagery

NTL=not a topographic linear feature on imagery
or round

5 96 N2W 8 Allen Brook (straight stream) CTL

6 96 N17W 7 dark vegetation strip NTL

15 53 N25E 9 southern half is several NTL

forest areas aligned and a

stream section

16 53 N24E 13 linear wooded area and stream NTL

17 53 N26E 6 road at southern end; rest is NTL

unexplained

18 53 N20E 6 unexplained NTL

19 65 N41E 8 border of dark vegetation NTL

and stream "

20 66 NI2W 35 unexplained NTL

24 53 N42E 38 southern 1/3 is .Beaver Creek; NTL

road and fields are mid 1/3; ,

northern 1/3 is the Grass

River

25 66 N60E 14 lithology and road and NTL

unexplained

28 54, 6(, N4OE 14 southern parallels lith- NTL

67 blogy; northern is pro-

7ably a stream

A-2



29 54, 67 N80E 8 road segment in center, pos- NTL
sible woodland, boundary

31 67 Ni'62E 1 stream valley NTL

32 67 N5E 4 unexplained NTL

33 67 N12E 12 unexplained NTL

36 43, 56 1 N67W 14 northwest Ii is a road, south- NTL
east - is unexplained

39 56 NS9E 9 unexplained; possible vege- NTL
tation border

40 56 N75W 8 tree-lined stream valley TL

41 56 N89W 8 unexplained NTL

42 57 N77E 6 winding stream NTL

43 57 N74E 5 unexplained NTL

44 57 NW 9 parallels lithology; also CTL
short section of river

45 70 N2E 7 appears to parallel litholog CTL
and stream segment

46 71, 58 N47W1 17 southern ' is road and stren NTL
northern is an elongate
woodland

48 69 N21W 7 southern 2/3 parallels lith- CTL
ology; northernl/3 is
unexplained

49 69 N19W 7 southern 2/3 parallels lith- CTL
ology; northern 1/3 is
unexplained
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50 69 Ni9W 5 southern 2/3'parallels lith- CTL
ofogy; northern 1/3 is
unexplained

55 69 N20E 6 unexplained CTL

57 69 N86W 13 straight stream valley CTL

58 69 N28E 5 straight stream valley CTL

61 68 N9E 9 southwest is stream, north- CTL

east 0 is unexplained

62 68 N55W 14 southeast 2/3-is a straight CTL
stream; rest is probable
stream

63 67 N61E 18 northeast 4/5 is straight CTL
stream; southwest 1/5 is
unexplained

64 67 N67E 8 straight stream valley CTL

65 67 N70W 15 mid 1/3 is unexplained; re- CTL

mainder is winding stream

66 67 N27E 8 straight valley CTL

68 70 N77W 5 unexplained NTL

69 70i 85 N82W 9 mid sectionis lake shore; CTL
rest is unexplained

70 70, 85 NSOW 8 valley and lake shore CTL

71 70 N53E 7 southern 2/3 is stream; CTL
northern 1/3 is.apparent dry

valley

A-4
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72 70 NS2W 1 15 -Istraight stream valley CTL

73 85 N84E 4 straight stream valley CTL

74 85 N48E 17 stream valley CTL

76 85 N74E 16 edge of topographicallyhigh CTL
area

77 85 N46E 21 stream valley CTL

78 85 N35E 31 southern 3/4 is stream CTL
valley; northern k.is

unexplained

79 85 N21W 8 Indian Lake and unexplained CTL

81 85 NilW 5 sub-parallel to stream CTL

valley

82 85 N40E 6 straight valley CTL

83 85 N17W 6 edge of topographically high CTL

area

84 85 N5E 6 stream valley CTL

85 85 .N19W 5 stream valley CTL

86 85 N31E 6 apparent dry valley CTL

9i 85 N19W 4 straight valley CTL

92 86 N41E 7 straight valley CTL

93 86 .N38E 6 possible vegetation border NTL

94 86 N48E 5 stream valley CTL

96 86 N43E 7 small valley TL

97 86 N24E 7 straight valley CTL

"98 86 N18W 6 lake and stream CTL

A-5



100 86 N19W 10 unexplained , INTL

103 86 N32E 7 straight valley CTL; breccia on Gloversville quadrangle (J.M.**)

105 86 N87W 15 stream valley CTL

106 86 N56W 7 highway and stream CTL

107 ;6, 87 N4E 3 northern part is stream: CTL; lithologic contact in southern part (J.M.)
rest is unexplained

10S 86 N67E .5 valleys with drak vegetati6n CTL

110 86 N31E 4 straight valley CTL

111 86 N64E 5 straight valley CTL

112 71, 86 N85E 10 straight valley CTL

113 86 N53E 6 straight stream valley CTL

11;4 86 N68E 6 stream + unexplained CTL

117 71, 86 N73W 26 stream valley CTL

119 71 N79W 19 length is stream valley; CTL
rest is unexplained

120 71 N61E 7 straight river valley CTL,

121 f 71 N30W 6 mid 1/3 is stream; rest is CTL

unexplained

122 71 N9W 4 straight stream valley CTL

123 f 71 N48E 12 straight 'stream valley CTL

124 71 N44E 3 straight stream valley CTL

125 71 N75W 10 straight stream valley CTL

126 71 N76W 7 unexplained CTL

129 71 N67E 6 stream valley TL

113 7, 71 N18W 11 straight stream valley C'IL



135 70 N6OE 13 winding stream CTL

136 70 N76E 9 straight valley + CTL

unexplained

137 70 N52E 7 straight stream valley CTL

138 70 .NW 5 small stream valley CTL

139 70 N28W 4 lake and dark vegetation NTL

141 70 N58E.. 7 northern k is stream; CTL
southern 3/4 is a road

148 70, 85 N82E 8 stream valley" CTL

149 69 N65E 3 stream valley CTL

150 69 N46E 2 stream valley CTL

151 69 N42E 3 border of dark vegetation CTL
area (also edge of topo-
graphic high)

152 69 N60E 7 stream valley CTL

153 69 N75E 3 lake shoreline . NTL

154 69 N69E 4 unexplained . NTL

155 69, 84 N49E 8 stream valley CTL

156 69 N42E 7 stream valley CTL

157 69 N70E 5 straight valley CTL

159 69 N76E 16 lake shoreline and boundary CTL
between topographic high and
low areas
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160 69 N N8E 6 several aligned stream valley CTL
+ lake

163 69 N32E 6 stream and lake CTL

164 68 NSCE 21 winding stream CTL

165 68 N52E 12 stream and road CTL

166 68 N68W 4 is stream; rest is NTL

unexplained

167 67, 68, N19E 67 long linear composed of sev- CTL
h9 eral stream, lakes and roads

169a 68 N68E 6 stream valley CTL i-5-4

169b 68 N45E 5 lake arm + stream CTL 11-3-4

170 68 N55E 5 lake CTL

171 68 N57E 4 unexplained NTL

172 1 68 N2.1E 8 stream and unexplained low CTL
area

173 68 N6W 6 Cranberry Lake shoreline NTL

174 6s, 63 N63E 8 stream valley CTL

175 68 N60E 7 narrow WSW arm of Cranberry CTL 11-3-5
Lake

176a 68 N44E 4 stream valley + lake arm CTL

176b 68 N44E 10 stream valley + lake arm 'CTL

177 68 N17W 3 'portions of two lakes and CTL

179 87 N12W 2 lake + dark vegetation TL
patChes

180 87 N55W 8 stream + lake + unexplained TL

182 87 'N88W 9 strean + like shore + dark CTL
vegetation area A-8



183 87 N22W 9 Iroad and dark vegetation NITL; fault, metagabbro against charnockite (J.M.)
area + small valley

184 87 N25W 7 road + lake + low areas TL

185 87 N55E 20 stream + unexplained CTL; fracturing along stream and also to north
beyond linear on imagery (J.M.)

186 87 N3:E 5 lake + unexplained + stream CTL

187 87 N24W 4 unexplained NTL; in glacial deposits (J.M.)

188 . 87 N73W 21 stream + road + unexplained CTL; SE is glacial except central knob which is
lithologic contact; W is close to fold axes and

crosses lithologic contact (J.M.)

189 87 N44W 4 unexplained NTL; in glacial deposits

190 87 N79W 5 unexplained NTL; fault between Precambrian and Paleozoic (J.M.)

191 87 N61E 6 stream + dark vegetation NTL; in Paleozoic rocks

193 87 N698E 7 unexplained + short stream TL; E is lithologic contact, remainder not

segment mapped (J.M,)

iS4 86 I N 57W 4 straight valley CTL

195 86 N42E 3 straight valley CTL

197 84 N5E 5 straight valley CTL

198 84 N69E 2 straight valley CTL

199 84. N89E 23 stream + boundary of topo- CTL

graphically hligh area

200 84 N3 3E 5 straight valley CTL

201 84 N 86W 3 unexplained NTL

202 70 N,:5E 4 edge of topographic high CTL

203 84 NOE 5 straight valley with dark CTL
vegetation

A-9



204 84 N71E 6 stream valley CTL

205 84 NSOW 10 stream + low areas with CTL
darker vegetation

206 8 4 N 551E 8 stream valley CTL

207 84 NI2E 6 stream valley CTL

208 84 N38W 6 stream + lake + str6am CTL

209 84 N7E 4 stream valley + unexplained CTL

210 84 NI2E 6 dark vegetation strip NTL

211 c8, 100 N81W 12 valley + lake + road iCTL

212 .83 i'5W. 31 stream + -small lake CTL

215 i 83 i11E 9 straight valley. CTL; a Seward Mountain lineament II-3-10

216 83 11E 5 straight valley + unexplainediCTL; a Seward Mountain lineament .I-3-i0

217 83 N39E 5 unexplained NTL

218 83 N 60'E 6 unexplained NITL

219 83 ' .IlE 9 stream valley + lake shore- CTL

linoI ine

220 83 8414, 8 lake shoreline + edge of topo4 CTL

graphic high

221 83 N85W 10 straight stream valleys CTL

223 83 1':52W 3 lake shore + unexplained N!TL

224 8S3 N75E 2 stream valley CTL

229 83 N63E 5 straight stream valley i CTL

230 82 N35W 6 unexplained NTL
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231 82 4V0 6 stream + unexplained + NTL
stream

234 82 N 40W 11 stream valley + unexplained TL

location only approximate

235 82 N,49E 11 unexplained NTL

236 82, 97 N61E 8 valley + unexplained NTL

237 81 i60E 5 ridge CTL

238 S1 N73E 4 ridge CTL

239 81 1133E 5 stream valley CTL

2 0 81 N137E 9 stream + unexplained + CTL

stream

241 81. N!81E 6 stream valley CTL

242 81 U62E 9 stream valley CTL

243 81 !73E 8 stream + unexplained + CTL

stream

244 81 N80E 12 unexplained NTL

24 81, Ni73E 11 unexplained NTL

246 81 Nl6W 8 stream valleys CTL

247 81 !N71E 13 straight valley with dark - CTL
vegetation

248 31 N 73E 5 stream valley TL

249 81 N73E 9 stream valley + unexplained TL

250 81 i 76E 9 dark vegetation patches + CTL

unexplained

252 81 167W 2 stream valley TL
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253 81 N42W 1 stream valley TL

254 81 N2W 5 stream valley TL

256 67 N62E 11 stream + transmission line CTL

257 96 N88W 10 several stream valleys CTL

258 96 N68E 20. "cuesta" ridge of northern ICTL
Adirondacks; not visible on
index

260 97 N36W 4- straight stream valley CTL

261 97 NGOE 12 stream + unexplained + CTL
stream

262 97 NGOE' 8 stream "valley ICTL

263 97 NSiE 6 straight stream NTL

264 98 N57E 6 stream valley CTL

265a 9S N5E 4 straight valley CTL; Mt. nhiteface 1-3-15

267 98 N77E 7 dark vegetation strip NTL

268 98 N37E 7 southern 3/4 is stream; CTL
northern k is unexplained

269 98 N37E 5 straight valley CTL

270 99 N6OE 10 two aligned valleys CTL

271 99 N:{3E 12 unexplained + straight valley CTL

272 99 N48E 4 straight valley CTL

274 99 N70W 9 small valley TL

275 99 N';3E : 7 straight valley CTL

276 99 N .IW 5 stream valley TL

278 99 N', W 13 strcam + une xplained CTL
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279 99 N24E 6 stream + unexplained CTL

99 NS5E 9 two small stream valleys CTL

281 99 N54E 5 stream valley CTL

282 99 N36E 4 stream valley CTL

283 99 N15E 14 unexplained + stream CTL

284 99 N24E 6 stream + lakes CTL

285 99 N6E 4 straight stream valley CTL

286 9!)9 1IE 4 stream valley CTL

2S7 99 N52W. 4 'stream + unexplained CTL II-2-21

288 99 N76E 5 stream + lake CTL

290 99 N38E 9 stream + unexplained ridge TL 11-2-8

291 99 N42E. 9 straight valley CTL

294 99, 116 N38E 10 sharp valley with dark TL
vegetation

295 iO N33E 6 wide stream valley with dark TL
vegetation

296 100 NOE 9 unexplained NTL

297 100 N2W 8 stream valley CTL

298 100 N38E 5 stream + unexplained TL

2'9 9 100, 117 N74E 6 stream valley ITL

301 100 N56E 6 stream valley TL

302 100, 101 N41E I11 stream valley CTL
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303 100 N64W 8 stream + unexpiained . TL

305 101 N75E 4 stream + unexplained TL

306 _01 N5SE 4 two straight valley with CTL
dark vegetation

307 101 N61E 5 dark vegetation areas CTL
around stream

309 101 N48E 20 stream + unexplained CTL; North Creek - Schroon Lake Village topographic II
lineament connects two previously-mapped segments,

and extends one for a total length of 50 km.

310 101 iNOE 5 stream valley with dark CTL
vegetation

311 101 N14W 6 stream valley CTL

312 101 N18W 4 stream + valley with dark CTL
vegetation

313 102 N25E 5 straight stream valley with CTL

dark vegetation

314 102 N81E 8 stream valley CTL

315 102 N6W 3 stream valley CTL

316 102 N7W 4' stream valley TL

317 102 N57E 3 Istraight stream valley CTL

313 102 N26E 7 straight stream valley TL

319 1.02 N64W 7 stream +.unexplained TL; fault, chlorite, slickensides (J.M.)

320 101, 102 N3W 7 stream NTL

321 102 N56W 5 dark vegetation strip NTL

322 102 N55W 6 small valley with dark CTL
vegetation strip

323 1.02 N11E 10 small valley with dark CTL

vegetation strip
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324 .02 N29E 8 stream valley CTL

325 [02 N12E 6 straight valley with dark TL; possible stratigraphic offset (J.M.), breecia
vegetation west through Bachellorville pegmatites (J.M.)

326 103 N39E 12 stream + unexplained TL

330 [14 N63E 11 irregular' dark vegetation NTL
strip

331 97, 114 N54E 11 dark vegetation + unexplained NTL; clear line on imagery but unclear in field

+ dark vegetation

332 114 N4W 16 dark vegetation strip NTL

333 114 N64E 20 stream + unexplained + NTL
stream

334 114 N5W 6 stream valley -- CTL

335 114, 116 N4W 8 stream valley ICTL

336 114, 11 N20E 8 unexplained NTL

337 115 N66E 12 unexplained + lake TL

338 '.15 N63E 4 valley with small relief TL

339 115 N6/4E 4 valley with small relief TL

340 15 N5OE 7 unexplained NTL

341 1.15 N69E 9 stream + unexplained NTL

342 115 N26E 4 unexplained INTL

343 1.15 N13W 2 unexplained CTL; unnamed creek to Willsboro Bay i -3-

343a 115 N74E 2.5 stream valley ICTL; Rattlesnake Mt. lineament I 1-3-

346 115 N78W 7 unexplained NTL

347 115 N27E 7 stream + dark vegetation NTL
border
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350 115 N43E 13 unexplained ' stream + CTL; Elizabethtown - Buree Brook
unexplained

351 115, 116 N34E 11 unexplained + stream CTL.

352 115, 116 N32E 8 two stream valleys TL

353 116 N61E 6 unexplained NTL

354 116 N82W 6 stream valley CTL; Roaring Brook; °continues beyond divide

355 116 N36E 7 two stream valleys CTL

356 1 16 N82E 7 stream valley" CTL; fault in mangerite at western end

357 116 N65E 5 short straight stream valley TL

358 117 N5E' 6 lake + stream NTL

359 117 N6E 2 lake + stream + dark vegeta- CTL
tion area

360 117 N69W 4 stream + unexplained TL

361 11.8 N74E 5 unexplained NTL

362 118 N70E 9 unexplained + lake + NTL

unexplained

363 118 N7W 4 stream + unexplained NTL

364 ..18 N8OE . 4 unexplained NTL

365 118 N45W 8 stream + dark vegetation NTL
area

366 .18 N19E 4 winding stream + canal . CTL

368 119 N69E 7 stream + unexplained CTL

369 119 N13E 11 unexplained ' NTL

370 11.9 N33E 3 canal + unexplained NTL
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371 67. 81, N58E 75 stream + unexplained + dark CTL
82, 97, vegetation areas
1i13

372 !81, 97 N69E 61 edge of topographic high + CTL
lake

373 117 NS8E 3 road + lake CTL

374 100 N84E 8 broad stream valley CTL

375 85 N48E 11 stream valley CTL

376 85 N17E 5 stream valley CTL

377 83 N28E 2 dark vegetation strip . NTL

378 85 N89E. 19 stream valley CTL

384 65 N54E 16 combination of stream and NTL
vegetation borders

335 55, 66 N35E 12 dark vegetation border NTL

386 65 N19W 8 dark vegetation border NTL

3837 65 N13W 3 dark vegetation border NTL

338 65 N7W 3 dark vegetation border NTL

391 6 8 N9W 7 dark vegetation area + CTL
stream valley

392 69 NICE 3 parallels lithology + dark CTL

vegetation area

393 69,.56 N74W 18 Beaver River NTL

394 54 N17E 9 stream NTL

400 -55 N56E 18 stream + parallels lithology CTL

402 55 N74iW 5 railroad + stream NTL

60)3 5 56 NlQ)W 21 river + dark vegetation area NTL
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405 56 N54W 18 unexplained. NTL

407 43 1 N8E 12 tstream + unexplained NTL

409 42, 43 N30W 9 unexplained + vegetation NTL
border

410 43 N12W 5 Istream + road NTL

412 43 N33W 9 unexplained NTL

413 43 N46W 25 unexplained ,NTL

414 43, 44 N69E 26 railroad + dark vegetaticn I CTL
strip

415 44 N66W 4 stream + dark vegetation TL
strip

416 44 N86E 35 stream + unexplained CTL

417 44 N21W 9 stream + unexolained NTL

418 153, 54 N49E 26 railroad + black lake CTL.

419 66 N49E 4 unexplained NTL

420 70 N72E 8 stream valley CTL

421 70 N66E 9 stream + unexplained CTL

422 84 N62E 6 stream valley with dark CTL

vegetation strip

424 69 N83W 6 stream with surrounding TL
irregular dark vegetation
atrip

425 83 N80E 5 unexplained + stream + dark CTL
vegetation strip
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426 83 N63E 6 lake + stream CTL

427 86 N77E 7 small stream valley CTL; cuts diagonally across stratigraphy (J.M.)

L29 71 N46W 35 stream + lake NTL

431 85 N46E 7 stream TL

432 85 N7E 5 dark vegetation strip NTL.

333 I .5 N53E 4 straight valley CTL

437 97 N35E 7.5. vall.y + lake shore + CTL
ridge

*Numbers not shown in table represent linears that were declassified as a result of field study, because they are
caused by man or because they are lithologically controlled,.

M*Oral communication from James McLelland
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